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Integral-equation approach to the instability of two- 
dimensional sheared flow of inviscid fluid in a rotating 
system with variable Coriolis parameter 

Leon P J Kampt 
Department of Astrophysical, Planetary and Atmospheric Sciences, University of 
Colorado, Boulder, CO 80309-0391, USA 

Received 12 September 1990 

Abstract. An integral-equation approach to the linear barotropic-instahiuty prob 
lem is studied. A certain regularization process is used to construct an integral equa- 
tion which is free of inconvenient singularitier and is tractable by classical methods. 
Other advantages of the integral-equation approach over the conventional differential- 
equation approach based on the so-called Rayleigh-Kuo differential equation are 
studied. 

1. I n t r o d u c t i o n  

I t  is well known that in a two-dimensional sheared flow of inviscid fluid in a rotating 
system with a variable Coriolis parameter, a so-called barotropic instability can de- 
velop when s ' ( ~ )  = @ -  l i " ( ~ )  vanishes somewhere in the flow field U(y). Here S(y) is 
the absolute vorticity of the basic flow field U(y)i, which is the sum of the planetary 
vorticity @ and the relative vorticity of the flow itself (a prime denotes a y-derivative 
with I eastward and y northward). The linear normal-mode equation underlying this 
instability is a second-order differential equation that possesses a singularity where the 
phase speed c of a wave matches the local flow speed U .  The linear theory (Kno 1973, 
Tung 1981) predicts that the wave is barotropically instable when its phase speed c 
lies within the band liC - AU, < c < U, +Ali,, where Uc is the critical flow speed and 
AU, and AV, are determined by S'(y) < 0. The modes with marginal c(c = lic-AUl 
or c = U, + Ali,) are called neutral. Hence the idea is that only a narrow region of 
the flow field U(y) ,  where S'(y) < 0, is responsible for a resonant interaction between 
the flow field and the wave whereas the bulk of the basic flow carries the wave and is 
responsible for its dispersive properties. Thus the problem of barotropic instability is 
very analogous to that of the excitation of a monochromatic plasma wave by an elec- 
tron beam (Nicholson 1983, Churilov 1989). Both processes are (apart from notation 
differences) described by similar equations, in which the absolute vorticity S (with 
opposite sign) and the electron-velocity distribution play equivalent roles. 

Guided by this idea we present in this paper an  integral-equation approach to the 
(linear) instability of a zonal sheared flow. Although the analysis presented in this 
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paper applies also to the same stability problem without rotation (in which case we are 
dealing with the classical Rayleigh stability problem) we nevertheless include rotation 
for reasons of completeness remarking that it is always possible to reduce the problem 
to the classical Rayleigh problem by putting p equal to zero (see Drazin and Howard 
1966). 

We start in section 2 with a formulation of the barotropic-instability problem 
and derive the well known Rayleigh-Kuo equation for the normal-mode solutions, say 
the streamfunction perturbations. In section 3 we proceed by discussing an integro- 
differential equation that we'derive for the vorticity perturbation and of which the 
integral operator turns out to be non-separable. Section 4 deals with the formal so- 
lution of the integro-differential equation. Section 5 demonstrates the Rayleigh-Kuo 
inflection-point theorem in that we establish that, if S' does not change sign in the 
flow, then the integral operator of our integro-differential equation is self-adjoint with 
respect to the proper scalar product. In section 6 we present the normal-mode theory 
for the vorticity perturbation and derive an integral equation for the eigenfunctions, 
which has the form of a multiplication operator perturbed by an integral operator. A 
method for solving this integral equation is then used to find the continuum eigen- 
modes. We furthermore give in that  section a classification of the various eigenmodes of 
the Rayleigh-Kuo equation. Thus we are able to identify a new (implicit) form for the 
dispersion function governing the instability. Section 7 is devoted to the relationship 
between the conventional differential-equation approach to the barotropic-instability 
problem and the present integral-equation approach. In section 8 the initial-value 
problem for the barotropic-instability problem is evaluated. Special attention is paid 
to the asymptotic behaviour of the perturbation streamfunction for t - 00. The influ- 
ence of the logarithmic singularity in the perturbation streamfunction in the critical 
layer on this long-time behaviour is particularly discussed thereby identifying a misun- 
derstanding present in the literature. The disappearance of the continuous spectrum 
associated with the cuts due to this logarithmic singularity when the flow develops a 
sharp jump and becomes constant elsewhere (vortex sheet) is conjectured to be related 
to the mathematical phenomenon of what is called spectral concentration. In section 
9 we employ our new dispersion function to study the barotropic instability and thus 
derive expressions for its growth rate in terms of the neutral solutions. A way of con- 
structing a long-wave approximation similar to the one derived by Howard and Drazin 
(1964) but now for a bounded flow is presented in section 10. An important difference 
is that our long-wave approximation to the dispersion relation retains the logarithmic 
multi-valuedness contrary to the one of Howard and Drazin (1964). Section 11 finally 
deals with the construction of an exact (explicit) dispersion function by expanding the 
integral equation's kernel in some complete set of functions thus making its solution 
algebraic in nature. This exact dispersion function is in fact a determinantal equation 
that can be viewed upon as an alternative of the Fredholm determinant. Some special 
cases in which it can be solved exactly are considered. 

2. The basic problem 

Consider a basic steady two-dimensional flow of incompressible inviscid homogeneous 
fluid in a Cartesian z. (eastward)-y. (northward)-coordinate system (the subscript 
asterisks denote dimensional quantities; we shall soon drop them to use dimensionless 
quantities). The flow is assumed to be sheared in the y,-direction and to be bounded 
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by two rigid parallel planes, U. = yl* and y. = y,, either of which may be at infinity. 
Furthermore we assume that our system rotates with an angular speed $2,. perpendic- 
ular to the flow. It is also assumed that the curvature of the earth is negligible hut the 
variations with latitude 4 of the Coriolis parameter f. = 2R,, = 20, sin(4) is retained 
(0, is the earth's angular speed) and furthermore that the meridional component 0". .- 
of the earth's angular speed is neglected. 

The flow is now governed by the following equation of motion: 

aU 
a t  p- + p ( u .  V ) u  = -vp + pg - 2p(n x U) (2.1) 

where p is the mass density, U = (U, w ,  w) is the fluid velocity, p is the pressure and g 
is the gravitational acceleration (g  = --siz) and where the variables have been made 
dimensionless in the usual way with some velocity scale U of the basic flow U,(y,) 
and some length scale L of the variations of the basic flow. The other symbols in (2.1) 
have their usual meaning. In (2.1) we also have neglected centrifugal forces. 

Introducing the vorticity of the flow C = V x U and upon taking the curl of (2.1) 
we obtain 

- dw = (w .V)u  - w v . u  + VP x VP 
dt P2 

where d/dt is the substantial derivative. w is the so-called absolute vorticity of the 
fluid as observed from an inertial non-rotating frame, that is 

W = v X (U 4-n X T )  = C+2n. (2.3) 

It  is finally assumed that the flow is incompressible ( V  .U = 0) and geostrophic with 
no horizontal temperature gradients (a/& 5 0), that the relative vorticity C is much 
smaller than the planetary vorticity 2 n  and that the fluid is harotropic ( V p x V p  E 0), 
then for small Rossby number R, = U / ( f L )  the vorticity equation (2.2) may be 
approximated by 

dw d 
dt dt - ( C + f ) i ,  = 0 

which denotes conservation of absolute vorticity (frozen-in vortex lines). 
Equation (2.4) turns out to describe adequately well the synoptic behaviour of a 

meridionally sheared zonal flow of harotropic fluid at  mid-latitudes. It will be the 
starting eqution for our subsequent considerations. 

Since we presume that the flow is two-dimensional and solenoidal, the velocity 
field U may be expressed in terms of a streamfunction 11 = +(x, y) defined by letting 

from which it is easily verified that 
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Substituting this into (2.4) yields 

where the Jacobian of two functions 

aAaB aAaB J(A, B )  = -- - -- aZ ay ay ax 
bas been introduced and where we have expande, 
series about the latitude +,, as 

(2.8) 

’ Coriolis parameter f in a Taylor 

f = fo + py + (higher order terms) (2.9) 

where 

(2.10) 

p is henceforth assumed to be constant. The boundary conditions for (2.7) are 

+(Z,Y = Yl) = 0 = $(Z>Y = Yz). (2.11) 

In order to linearize (2.7) we assume that the dependent variables u , u  and ti, are 
a superposition of an atmospheric mean state with a sheared zonal flow U(y) and 
a streamfunction @(y) and unsteady perturbations u(z ,y , t ) ,  u(z,y, t )  and @(x, y, t )  
according to 

dV 
u = U ( y ) + u ( z , y , t ) =  - -+u(z ,y , t )  

dy 

= 4% Y, t )  

$ = @(Y) + $(z, Y, 4 
Then the vorticity equation (2.7) may be written in the following form: 

z + U ( y ) -  V 2 $ + - - = 0  d s  ati, 
{ a  ax a 1 d y a z  

where S = S(y) is the absolute vorticity of the basic state, i.e 

(2.12) 

(2.13) 

(2.14) 

Upon taking a harmonic I- and t-dependence according to 

$ ( z , Y , ~ )  = 4(y;c,t)exp{ik(z -ct)} (2.15) 

(2.13) reduces to the well known Rayleigh-Kuo equation (Rayleigh 1880, Kuo 1949), 
i.e. 

(2.16a) 
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The prime denotes differentiation with respect to y. Equation (2.16a) is subjected to 
the boundary conditions 

l i ( y=y l ;c ,k )=O=l i (y=y , ;c ,k ) .  (2.166) 

k is the zonal wavenumber and c is the phase speed of the wave (2.15). If the flow is 
unbounded (which corresponds to the interpretation of y as a Mercator coordinate), it 
can happen that for some real c the streamfunction 4 oscillates in y a t  infinity without 
damping or amplification. In that case (2.166) should be replaced by Sommerfeld's 
radiation condition. Equations (2.16a) and (2.166) constitute what is known as the 
barotropic-instability problem. That is an eigenvalue problem for the phase speed c 
which may be complex, i.e. 

. Y a + i y  e = c, + I C i  = - = - 
k k 

(2.17) 

where v is the wave's angular frequency. 
If cj > 0, the solution (2.15) of (2.16) is amplified (instability); if ci < 0, the 

solution is damped; and if ci = 0, the solution of (2.16) is said to he neutral. Since 
the problem is invariant under complex conjugation, a damped solution with ci < 0 
implies the existence of an amplified conjugate solution with ci > 0 (and vice versa). 
Thus instability of a disturbance of a given wavenumber corresponds to complex c and 
stability to real e. 

If the phase speed is real, so for neutral solutions, there is a singularity in ( 2 . 1 6 ~ ~ )  
at the critical level y = y, where U(y,) - c  = 0. Lindzen and Tung (1978) argued that 
the instability of the sheared flow is caused by wave over-reflection from this critical 
layer. 

In what follows we shall restrict ourselves to flow profiles U(y) that are continuous 
and also have continuous derivatives. Discontinuous profiles should be considered as 
limits of continuous ones. 

Equation (2.16) constitutes a Sturm-Liouville equation for which the theory is well 
known and although there is a wealth of standard equations of mathematical physics 
one could revert to when (2.16) needs to be solved for various profiles U(y), in practice 
it could be difficult to do so for some particular one. Moreover we have to deal with 
singularities there where the flow matches the phase speed e .  These singularities are 
determined by the possibly multi-valued function. 

y = yc = U - ' ( c ) .  (2.18) 

Nevertheless it is possible to obtain a necessary (but in general not sufficient) con- 
dition for instability. I t  was in fact Kuo (1949) who generalized the well known 
inflection-point theorem of Rayleigh (1880). It states that a necessary condition for 
the barotropic instability is that S' = p - U" changes sign somewhere between y1 and 
y,.The region where S' < 0 can he shown to be the region of instability. Changing the 
sign of S', however, is not always a sufficient condition for the harotropic instability 
as can he shown by a counterexample with U(y) = sin(y) (see Howard and Drazin 
1964). At the location of the singularity one of the two independent solutions of (2.16) 
remains finite whereas the other becomes logarithmically singular as a local Frohenins 
expansion reveals and furthermore undergoes a sudden change of phase. To avoid- 
ing this unphysical difficulty one could take into consideration the effect of viscosity 
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which turns out to be necessary only in a narrow layer around the critical level at  
y = I/, (Lin 1955, 1957). The higher-order equation then obtained is the well known 
Orr-Sommerfeld equation that reduces to its degenerate form (2.16) for zero viscosity 
(Kuo 1949) and can be studied by means of boundary-layer techniques. In this picture 
the nonlinear evolution of the barotropic instability results in lateral mixing and the 
production of eddy energy at the expense of kinetic energy of the zonal flow. In a 
self-consistent treatment of the problem i t  is found (Churilov 1989) that this nonlin- 
ear development of the instability results in a rearrangement of the absolute vorticity 
S of the basic state. The S(y)-profile is smoothed and homogenized thus leading to 
a ‘plateau’ formation. This is very analogous to what happens with a monochro- 
matic Langmuir wave excited by an electron beam in a plasma. Both processes are 
described by similar equations in which the absolute vorticity (with opposite sign) 
and the electron-distribution function play equivalent roles. In the next section we 
shall consider an integral equation that is equivalent to the linearized Vlasov equation 
of plasma physics describing the linear evolution of the Laugmuir wave mentioned 
hereinbefore. 

3. A n  integro-differential  equation for the perturbation vort ic i ty  

Consider once again the linearized vorticity equation (2.13) but now in the following 
form: 

where we have introduced the perturbation vorticity s with 

It may be noted that we already have Fourier transformed with respect to I. The 
expression on the right-hand side of (3.1) is actually an integral operator acting on 
the perturbation vorticity. We shaii denote its kernei by -Q(y i 7)/C2, so that we can 
write for (3.1) 

where 

in which 6 is Dirac’s function and 

Q(Y = Y, I 7) = o = Q(Y = U, i 7). (3.5j 

The boundary conditions to be superimposed on s are taken to be 

s(y = y,, t ;  k) = 0 = s(y = y,, t ;  k) (3.6) 
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which, in effect, is equivalent to (2.166) since whenever some eigenfunction 4 solves 
(2.166), then 

(3.7) 

Equation (3.3) is interesting in itself, as it poses the barotropic-instability problem 
under consideration in a physically elucidating way. The left-hand side represents the 
free oscillations of the individual vortex sheets as if they constitute an infinite set of 
linear (latitudinal) oscillators with continuously distributed eigenfrequencies k U ( y ) ,  
whereas the right-hand side, i.e. the integral operator, describes the coupling. The 
left-hand side of (3.3) is called the free-streaming term, whereas the right-hand side 
represents the interaction. 

Equation (3.3) is analogous to integro-differential equations describing linear os- 
cillations of a hot (Nicholson 1983) and a cold plasma (Sedl6Eek 1971h) as well as 
to an integro-differential equation describing anisotropic neutron transport (Sattinger 
1966). 

4. Formal solution of the problem 

To obtain a formal solution of (3.3), we rewrite this integro-differential equation as a 
Cauchy problem 

-1 as 
ik Bt 

= Bs __  
where B is the bounded operator 

Since B is bounded, the spectrum of B is compact and Howard’s semi-circle theorem 
(Howard 1961) implies that the point spectrum of B lies within the upper semi-circle 
with centre (Umin + Umax)/2 and radius (U,,,,, - Umin + P / k 2 ) / 2 .  Assuming tacitly 
and henceforth (without loss of generality) that k > 0, the formal solution of (3.3) is 
now given by 

S(Y, t ;  k )  = W Y ,  0; k )  (4.3) 

where 

X: = exp(-iktB). (4.4) 

Laplace transforming (4.1) yields the following alternative representation of the oper- 
ator: 

s ( y , t ; k )  = - 2f, L exp(-iktc)(c-B)-’s(y,O;k)dc (4.5) 

where r is a curve encircling the spectrum of B. 
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We now give an alternative expression for the resolvent (B - c)-l in terms of the 
Green function of the Rayleigh-Kuoequation. For that we observe that S z (B-c)-'& 
with &(y = yl) = 0 = &(y = yz) is a solution of the equation 

with 

Thus if G(y I q)  is the Rayleigh-Kuo equation's Green function, then 

i(y;  c, k) = ( B  - c)-'&Y; c, k) 

If and G2 are two independent solutions of the Rayleigh-Kuo equation with ~ & ( y  = 
yl) = 0 = ~ Z ( Y  = y2), then 

where 

(4.9) 

(4.10) 

W denotes the Wronskian which in the present case does not depend upon y. Thus it 
becomes clear that  the poles of ( B  - c)-' correspond to the zeroes of p(c, k). 

In general the formal solution (4.3) of the intial-value problem (4.1) is of less 
practical use because finding the resolvent (B - c)-' is tantamount to solving the 
Rayleigh-Kuo equation. However, for example, plane Poiseuille flow with 

(4.11) 

where yo and U, are arbitrary constants the situation becomes very simple. In this 
case S'(y) E 0 and B according to (4.2) reduces to a multiplication operator, 

B 
WY) = ;z(Y - Y O l 2  + U0 

B = U(y). 

Now (4.3) and (4.4) yield 

s ( y , t ; k )  = exp{-ikU(y)t}s(y,O;k) 

(4.12) 

(4.13) 

denoting that the perturbation vorticity at  point y at  t imet is obtained from that at 
time 0 merely by multiplication with the phase factor exp{-ikU(y)t). In this case B 
does not possess a point spectrum but only a continuous spectrum. An eigensolution 
can easily be found for each k and c in the range Umin 5 c 5 U,,,ax. 
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5. Self-adjointness 

Consider again the integral equation (4.1) for s = 6 exp(-iwt), i.e. 

= (F + q q y ;  e ,  k) 

where we have split the operator 5 into an operator T = U(y) that is called the free- 
streaming operator for i t  corresponds to the free, mutually independent oscillations of 
the fluid and an opertor Z = S’(Y)V-~ that accounts for the interaction. Clearly the 
operator E is not Hermitian in the scalar product 

However, if we introduce the weight function W(y) = l/S’(y) and require that W(y) 
is continuous and does not change sign in (yl, y2), then with 

( f 3 d  = (f, Wg) (5.3) 

E becomes Hermitian for we have 

(5.4) 
(f3 09) = (f? W(Ug +Zg)) = (f> WUg) + U> WZg) 

= (WUf,  9) + W Z f ,  9) = (5f39) 

where we have used the symmetry property of the Green function. This shows that 
if S‘(y) is continuous and does not change sign in (yl,y2), then all the eigenvalues c 
of 5 are real and consequently the flow is stable. Thus we have, in fact, rederived 
the Rayleigh-Kuo inflection-point theorem. Moreover the foregoing implies that the 
eigenfunctions in(y;  cn ,k )  for the eigenvalues c, are orthogonal. This can be used to 
obtain the following expansion of s(y, t ;  k) for a prescribed initial condition s(y, 0; k): 

provided that the set of eigenfunctions is complete. The integral in (5.5) is to be taken 
over the continuous spectrum of E. Thus a convenient consequence of the Hermiticity 
of E is that the adjoint eigenfunctions need not he introduced in the stable case. 

If S’(y) changes sign somewhere in the flow between y2 and y2, then we also have 
to consider, along with our fundamental equation (5.1), an adjoint equation which is 
taken to he 

Now, again it is straightforward to show that the eigenfunctions i(y; e ,  k) and 6(y; e’, k) 
are orthogonal for c # e‘ with respect to the scalar product (5.2). 
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6. Normal-mode analysis 

The operator B in (5.1) consists, as we have seen in the preceding section, of an op- 
erator of multiplication by U(y), perturbed by an integral operator 1. Eigenvalue 
problems for such type of operators have been studied previously for the case of oscil- 
lations in hot and cold plasmas (van Kampen 1955, Case 1959, Sedlitek 1971b) and for 
the case of anisotropic neutron transport (Sattinger 1966a). Moreover Rosencrans and 
Sattinger (1966) studied a similar operator that occurs in the theory of hydrodynamic 
stability for two-dimensional parallel flow of an incompressible fluid. 

In the present paper we follow a method of solving (5.1) presented by Sattinger 
(1966a,b) and SedldEek (1971b). For that we assume that the integral operator 1 
in (5.1) and the multiplication operator U(y) have identical continuous spectra; the 
integral operator's only effect being the creation of new point eigenvalues. Thus we 
conjecture the solution of (5.1) to be of the form of a delta function (i.e. the eigen- 
function of the multiplication operator) multiplied by some function D(c, k )  plus a 
perturbation term (due to the integral operator), the overall form of which is given by 

d(y;c, k )  = D(c,  k ) S { U ( y )  - C }  - P d(y;c,t) ,  
U(Y) - c 

Here P signifies that the principal value integral is to be taken when integrating the 
expression for d with respect to y. 

The form of the normal-mode solutions (6.1) has in fact the same structure as 
the van Kampen eigenmodes of hot uniform plasma oscillations (van Kampen 1955). 
Equation (6.1) says that for any wavenumber k, there are an infinite number of normal 
modes, one for each value of e. Furthermore these normal modes are neither damped 
nor amplified, but exist for all time with real phase speed e. We also note that (6.1) 
seems to violate the linearization procedure we have employed in (2.12) and (2.13) 
because i - CO for c - U(y) due to the delta function. Nevertheless the modes (6.1) 
are ofimportance because of the possibility or creating a physically and mathematically 
acceptable perturbation by adding up many such modes. 

We now substitute (6.1) into (5.1). This is legitimate since the kernel Q(y I r ] )  is 
continuous in y and r ]  so that its product with a delta function is well defined. We 
thus find 

Specifying the function D by the assumption 

where C is an arbitrary real constant, the function &y;c, k) turns out to be defned 
by the following inhomogeneous Fredholm equation of the second kind: 

where 
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The principal-valuesign is now superfluous since the kernel H is finite for y = y, where 
U(y,) = e. We have thus reduced the problem of solving the singular integral equation 
(5.1) to one of solving a non-singular integral equation. This must he accepted as a 
simplification because efficient approximative procedures exist for solving such integral 
equations. One such procedure will be utilized in section 10 to obtain a long-wave 
approximation to the dispersion function determining the discrete eigenvalues of B for 
a bounded flow. The real constant C is determined by .=I:'- S(Y; c, k) dy. (6.6) 

Henceforth we assume the perturbation vorticity S to be normalized such that C = -k2 
presuming that J:,' B dy # 0. 

There remains the question as to  the existence and uniqueness of a solution of 
(6.4). . .  The answer is provided by Fredholm's alternative theorem (Hildebrand 1965) 
from which we deduce that for a solution of (6.4) to be unique the corresponding 
homogeneous integral equation (obtained when C is put equal to zero in (6.4)) must 
not have a non-trivial solution. Or stated otherwise, the vorticity equation must not 
possess any solution with 

B(y; c, k) dy = 0. (6.7) 

If, however, the Corresponding homogeneous integral equation does have a non-trivial 
solution, the existence of the solution of (6.4) is guaranteed if, and only if, the 
inhomogeneous term Q(y I U,) is orthogonal to every solution of the adjoint homoge- 
neous equation. If this condition is not fulfilled, then C must be put equal to zero 
implying (6.7). 

roilowing Case (iS5Sj we now can ciassify the eigenvaiues and eigeniunctions oi 
(5.1) in four groups. 

Class I. 

- 11 

c is real and S'(y,) # 0. The normalization (6.6) shows that 

i (y;  c, k) = D(c, k)6{U(y) - e) - P b(y; c, k) (6.8) U(Y) - c 
where 

Class II. c is real and S'(y,) = 0. The solutions are again given by (6.8) and (6.9). 
The principal-value sign is not necessary now. 

Class IIL c is real, S'(y,) = 0 and D(c, k) = 0. This can only occur for discrete 
eigenvalues c, and the solutions are 

Class IV. e is complex. The solutions are given by 

(6.10) 

(6.11) 

where due to the normalization (6.6) the phase speed c again is discrete with D(c, k) = 
0. 



2040 L P J Kamp 

Thus we find that the spectrum of 5 is continuous provided that the following do not 
hold simultaneously 

S'(l/J = 0 (6.1211) 

and 

(6.126) 

Note that we have tacitly assumed that U'(y,) # 0. Moreover it is now clear that  
the point spectrum of 5,  that  is the set of discrete normal-mode solutions of (5.1), is 
determined by 

(6.13) 
I 

for which reason we call D(c,k)/lU'(yc)l the dispersion function. Setting D = 0 does 
reduce the inhomogeneous non-singular Fredholm equation (6.4) to 

(6.14) 

which is a homogeneous singular Fredholm integral equation. Consistent with 
D ( c , k )  = 0, this equation may have solutions for certain isolated values of c. In 
contrast to the standard Fredholm theory the eigenvalue parameter c is contained in 
the equation in an unusuai manner. Nevertheiess the Ftedhoim theory may appiy and 
the Fredholm determinant then gives the dispersion function again. 

7. 
approach 

The ansatz (6.1) can be straightforwardly related to the Rayleigh-Kuo equation 
(2.16a). For that we note that (2.16a) has two classes of solutions. 

Class I. Discrete solutions that satisfy 

On the relationship between a differential- and an integral-equation 

and the boundary conditions 

Class II. Solutions which satisfy the boundary conditions and 

(7.1) 

where X is an arbitrary constant. 
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In the latter case we thus have a continuum of normal modes for c running between 
Umin and U,,,ax. Combining (7.2) with (3.2) gives 

q y ;  c, k) + P "(') d(y; e ,  k) = A(c, k)6{U(y) - c) (7.3) U(Y) - c 
or 

We thus have demonstrated that 

D(c,k) = A(c,k) 

b(y; e, k) = 4 ( Y ;  c, k) 

and that 

(7.5) 

(7.6) 

where $(y; c. k) solves (7.2). In retrospect we now see that we have, in fact, regularized 
the integral equation (6.14) by making use of the arbitrariness of the jump in the 
derivative of the perturbation streamfunction at the critical layer. The solution of 
( i . 2 j  is 

where we have used (4.10) with q = y,. Since the zeroes of X(c, I C )  and p(c,  k) coincide, 
this becomes 

A 
%(y; c, k) = - 4l(Y<; c> k)dz(Y>;  e ,  k) (7.8) lUYYc)I 

where A is a constant that is determined by the previously introduced normalization 
s:,'idy= -!? (see (6.6)). 

The integral equation (5.1) can also, after some manipulations, be written as 
follows 

WY) - CMY; c,  k) = A / y 2 1 Q 1 ( ~ ) Q z ( ~ )  - Q l ( y ) Q 2 ( d M q ;  c, k) dq 
J Y ,  

where we have employed the notation 

4iv i 4 = Qliu jQzid  (i.iuj 

for the kernel Q. It is easily shown that irrespective of the extension of the basic flow 

(7.11) QI(v)Qz(Y) - Q I ( Y ) Q z ( ~ )  = ksinhIk(q - Y)). 
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With this and the normalization 

1; Qz(y)i(y; e ,  I ; )  dy = k2 

(7.9) becomes 

(7.12) 

sinh{k(r) - y)}S(r); c ,  I;) dr) + "(') Ql(y) (7.13) 
U(Y) - c 

which is a Volterra integral equation with a constraint (7.12). With standard proce- 
dures this Volterra equation can be converted into the following differential equation 
for the perturbation vorticity d: 

where 

Taking 

(7.15) 

(7.16) 

gives 

d - [{U(y) - + kz{U(y) - c )  - {U(y) - e }  
dy 

which is in fact the equation utilized by Howard and Drazin (1964) to obtain a long- 
wave approximation to the stability characteristics of unbounded flows. 

8. The initial-value t r ea tmen t  

Instead of the normal-mode approach we pursued in section 6 to  describe the 
barotropic-instability problem, we would now like to focus on an initial-value treat- 
ment. For that we follow Case (1960) in that we consider the Perturbation vorticity 
equation (2.13) and take the Fourier transform with respect to I and Laplace trans- 
form with respect to t. Thus, let 
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Equation (2.13) then becomes 

where 

d2$(y, t = 0; k) - kZ$(y, t = 0; k). 
dyz 

Qdy;  E )  = 

The solution of (8.2) can be found with the Green function introduced in section 4 
(see (4.10)) and is given by 

Let us for a moment dwell upon the Green function G(ylq) that is given by (4.9). 
The general solution of the Rayleigh-Kuo equation is 

$(Y; C, k) = A&(K k) + B&(Y; C, k) (8.5) 

where dl  and & are two independent solutions. The boundary conditions demand 
that 

which has then, and only then, non-trivial solutions for the constants A and I3 if 

v (c ,k)=  d1(Y1;c,k)4Z(YZ;c,k) - &(Y2;c,~)&(Y,;c,k) = 0. (8.7) 

The two independent solutions 4, and G2 that constitute the Green function (4.9) are 
given by 

41b ;c ,k )  = 4z(Y1;C,k)41(Y;c,~) - d,(yl;c,k)&(Y;c,k) 

4 A Y ;  e, k) = $ A Y z ;  c, k h ( Y ;  c, k) - J1(Yz; c, k)dz(y;c, k). 
(8.8) 

The Wronskian of dl and $z is thus given by 

W[41,421= p(c,t-) = V(C,k)W[41,421 (8.9) 

which, if we choose W[4,, d,] = 1, yields p = Y. 

that is 
To make any further progress possible we consider a very simple initial condition, 

Qo(y; k) = -k26(y - E ) .  (8.10) 
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This means that $(y,t = 0 ; k )  is given by the Green function Q(y I (). Now (8.4) 
becomes 

The Laplace inversion of (8.11) yields 

(8.11) 

(8.12) 

where r is to be taken such that the integration runs above all the singularities of the 
integrand. If we are interested in the asymptotic behaviour of $(y, 1 ;  k) for t m we 
may use standard Tauberian theorems (van der Pol and Bremmer 1950) for the Laplace 
transform. For that we have to deform the integration path in (8.12) downward 
thereby passing the singularities of the integrand. These are given by c = U(() and 
by p(c, k) = 0. To investigate the nature of these singularities, we construct a local 
Frobenius expansion (Ince 1956) for the functions 4' and JZ 

provided that U'(y,) # 0, where y, is given the multi-valued inverse function y, = 
U-'(c). Inserting (8.13) into the dispersion function (8.7) shows that U and through 
(8.9) also p ,  are multi-valued too the character of which is determined by a logarithmic 
term of the form 

(8.14) 

Thus to make the dispersion function single-valued, we have to cut the complex c- 
plane. If U-'(c) happens to be single-valued, these cuts are identical with the interval 
of the continuous spectrum of the Rayleigh-Kuo equation and in that case are referred 
to as spectral cuts (SedliEek 1971a). However, the multi-valuedness of U - ' ( c )  could 
imply that these spectral cuts have to be extended, for example, to a cut along the 
real c-axis with cy -< U,,,ax. 

Adam also considered the initial-value problem for a sheared flow (case IV' of 
Adam (1984, 1986)). Although he does not take rotation into account, the mathemat- 
ical structure of his equations is identical with ours. Moreover taking = 0 in our 
treatment does reduce our problem to the one he considers. Adam (1984, 1986) states 
that the dispersion relation governing the normal modes of the dependent variable is 
single-valued in the complex c-plane and that this fact makes this case (case IV' of 
(Adam 1984, 1986)) significantly different from some other problems he considers. As 
we have demonstrated hereinbefore this is incorrect. Although the variable he con- 
siders does not become infinite a t  y = yc, its derivatives do and the c-plane has to 
be cut due to this logarithmic singularity, as it turns out to be, in order to make the 
dispersion relationship single-valued. 
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Returning to the asymptotic behaviour of the streamfunction perturbation 
$(y, t ;  k ) ,  according to (8.12) it may be shown that the Laplace inversion gives rise to 
discrete normal modes due to zeroes of the dispersion function and due to the simple 
pole l / (U  - e) whereas the continuum due to the cuts that result from the logarithm 
and the multi-valued function U-' (c )  give rise to something that vanishes as l /t  due 
t o  phase mixing of the continuum spectrum in physical space. Apart from the differ- 
ent asymptotic behaviour of the discrete normal modes and the continuous spectrum 
(exponential versus algebraic), there is another mathematically as well as physically 
important difference between them. Apart from the so-called free-streaming term 
exp{-ikU(y)t}, the various exponential discrete normal modes have frequencies that 
do not depend upon position and thus they represent the only modes that deserve to 
be called collective. 

Contrary to the multi-valuedness introduced by U-'(c), the multi-valuedness of 
the dispersion function due to the logarithm is inevitable. Howard and Drazin (1964) 
derived an approximate dispersion relationship for long-wave solutions of the Rayleigh- 
Kuo equation. Their expressions, however, do not reveal any logarithmic term al- 
though it  should be present as i t  is for k = 0. The reason for this is probably that 
their dispersion relationship is in effect an approximation for sharp jumps in the basic 
flow U(y). However, there are some quite significant differences between continuous 
and discontinuous flows. As we have argued heretofore, for a continuous flow there is a 
continuous spectrum the contributions of which are algebraically damped waves with 
frequencies that depend upon position. For a discontinuous flow, like, for example the 
vortex sheet, the spectrum is purely discrete. The whole fluid oscillates collectively (it 
there turns out that there are only two eigenmodes with conjugate eigenvalues for the 
vortex sheet). The question now arises as to what happens in the limiting process of a 
continuous profilt to make it discontinuous. We conjecture that the answer is provided 
by the mathematical phenomenon of spectral concentration (Titchmarsh 1951, Dolph 
1961, Friedrichs 1966). An arbitrarily small perturbation may totally alter the nature 
of the spectrum, destroying the discrete spectrum entirely and creating a continuous 
spectrum instead. 

9. The baro t ropic  instabi l i ty  

The dispersion function (6.3) can be exploited to study the problem of instability 
itself. For that we must first derive the continuum eigenfunctions of (5.1) as boundary 
values on the real c-axis. Instead of making the ansatz (6.1), we now look for complex 
eigenfunctions of the form 

Following the same procedure as previously, we now find the dispersion function 
D(cr,k)/lU'(yc)l to be specified by 
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The dispersion function thus found can now be employed to investigate whether or 
not the flow is stable. To that end we introduce the function 

To determine whether the flow is stable or not one could use the Nyquist method in 
that one draws the curve Cz in the complex Z-plane, found by mapping the curve 
C,, which encircles the upper half complex c-plane. If Cz does encircle the origin 
(counterclockwise) one or more times, the flow is unstable. To find necessary and 
sufficient conditions for instability in this way depends very much on the kind of profile 
one considers as well as whether the flow is boucded or unbounded (see Tung 1981). 
If we take 4 in (9.3) to  be bounded and positive for all e, then for IcI - 00, Z + 1. 
If furthermore we presume a basic-flow profile U(y) of which the derivative of the 
absolute vorticity S‘ = P -  U”(y) possesses only two zeroes (inflection points), then Z 
crosses the real Z-axis at only two places, that is where S’(y,) = 0. In this situation 
it seems that the only way for Z to  encircle the origin arises if, and only if, 

(9.4) 

where 

(9.5) 

in which S(y) attains a local maximum value for y = yI and a local minimum value for 
y = y,,(S’(y) goes from positive to negative in y = y, and from negative to positive 
in y = yI1 and we assume U’(y = y,, yII) # O).The first part of (9.4) is satisfied for 
certain k if 

(9.611) 

which is very reminiscent of the Fjartoft theorem (Fj~r tof t  1950, Tung 1981) special- 
ized for the neutral solution and the second part of (9.4) yields 

(9.66) 

where & is found via (7.8) in terms of the neutral solutions for c = crl and c = cr2. 
In general we may conclude that, irrespective of the type of basic-flow profile one 
considers, one thing is clear from (9.3). In order to encircle the origin, Z has to cross 
the real Z-axis somewhere implying that S’(yc) = 0 (see (9.2)), which results in the 
Rayleigh-Kuo equation becoming the equation for the neutral solutions. Thus we find 
that 4 in (9.3) is given by (7.8) where $jl and q2 are the two neutral solutions of the 
Rayleigh-Kuo equation. 
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Instead of (9.2) we also could split Z beforehand into its real and imaginary parts. 
If we consider only slightly unstable disturbances with lcil 

0 = k2Z(c,C) = k2Zr(c, k) + ik2Z,(c, k) zz kaZ,(c,, k) + ik2Zi(c,, k) + ikzci- 

c,, then 

c=c, 
ac 

(9.7) 
azr I 

where we have Taylor expanded Z. The term c,aZi/ac is ignored because it is the 
product of ci which is small, and aZi/ac, which can be assumed to be small because 
ci = Z,, which can be seen by equating the real and imaginary parts of (9.7) separately 
to zero. From (9.7) we thus deduce 

For the purpose of this integration and to be consistent, we can take S'(y,) = 0, which 
makes the principal-value sign superfluous. In that case, however, the function 4 in 
(9.8) is in fact nothing else hut the neutral solution of the Rayleigb-Kuo equation. 
Equating the imaginary part of (9.7) to zero yields 

Using (9.2) this becomes 

(9.9) 

(9.10) 

where the subscript 'neut' denotes the neutral solution. In the special case that 
does not depend upon c and k (as for example for the Bickley jet U(y) = sech2(y), 
see Lipps (1962)), a further reduction of (9.10) is possible. Consider 

f{c,(k),k}= k2Z,(c,,k)= k 2 -  &(y)dy = 0 (9.11) "(') 

where c,(k) is defined by f(c,, k) = 0. Differentiating f gives 

Or with (9.11) 

Combining (9.12) and (9.13) yields 

Thus (9.10) can be rewritten into 
a d c  S'(y ) e. = - - L A  
k dk U'(y,) " yc d j (  1 ' 

(9.12) 

(9.13) 

(9.14) 

(9.15) 

indicating that the neutral solution, the amplitude of which does not depend upon fre- 
quency and wavelength, should be dispersive in order to possess neighbouring unstable 
waves. 
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10. Solving the integro-differential equation; a long-wave approximation 

One of the main difficulties in constructing exact solutions of the integro-differential 
equation (3.3) is the fact that  the kernel Q(y I q)  in (6.4) is non-degenerate. How- 
ever, for the bounded-flow case we may expand the kernel Q in the complete set of 
eigenfunctions of the differential operator dZ/dy2 in (3.4). Moreover it is then possi- 
ble to indicate a way to  construct a long-wave approximation to  the exact dispersion 
function that contrary to the long-wave approximation of Howard and Drazin (1964) 
retains the multi-valuedness due to the logarithmic singularity. 

The normalized eigenfunctions of d2/dy2 for 0 5 y 5 I are 

(10.1) 

(10.2) 

are the corresponding eigenvalues. With the general formula for the eigenfuuction 
expansion of a Green function we obtain 

where 

and 

I y \  
fn(y) =sin (nxi) . 

Substitution of (10.3) in the Fredholm equation (6.4) results in 

where 

and of which the solution is found to be given by 

(10.3) 

(10.4) 

(iG.5) 

(10.6) 

(10.7) 

(10.8) 
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where 

These coefficients b, are found in the usual way (Hildebrand 1965). 

to be given by 
The dispersion function is now readily obtained from (9.3) and with (10.8) found 

I 
Z(c,k) = 1 - p l m  b,(c, k)P 1 sin (nf) dy = 0. (10.10) 

C 
"=I 

Z(c, k) contains terms of the form In{(y, -l)/yc} = In[{U-'(c)-I)/U-'(c)] resulting 
in multi-valuedness of Z except when S'(y,) = 0 or sin(nayJ1) = 0 where the latter 
can only be fulfilled if y, = 0 or y, = 1.  

Truncating the series in (10.10) results in a long-wave approximation of the disper- 
sion function provided (10.8) is convergent. For that we refer to Hildehrand (1965). 

11. The exact dispers ion relationship; an alternative to the Fredholm 
de terminant  

Instead of seeking approximate solutions of the non-singular integral equation (6.4), 
one could also start from the original singular integral equation (5.1). 

Consider the following expansion of the kernel &(y I 7) in a complete, but now not 
necessarily orthogonal, set of functions on the interval (y,, yz), say q,(y), according 
to 

(11.1) 

where the coefficients r, will be functions of q .  For that we presume that either we are 
provided with two biorthogonal sets of functions, of which q,(y) is one, or that the set 
9,(y) is a so-called Riesz base (that is 9,(y) = d+,(y),  where A is a bounded, linear 
and invertable operator and +,(y) is a orthonormal base). Substitution of (11.1) in 
(5.1) yields 

where 

Next we again employ the ansatz (6.1), that  is 

(11.2) 

(11.3) 

(11.4) 
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where D is determined by the normalization (11.3), that is 

-Po1 k2 - PI1 -Pzl ' ' _  

-PI2 k2-P2z . ' .  -Po2 

or 

= o  

where 

(11.7) 

Setting D equal to zero in (11.6), the resulting set of linear homogeneous equations 
for s, yield non-zero solutions only if the determinant of the coefficients vanishes: 

or, more succinctly, 

lk26,, - pnm(cI k ) l =  0. 

(11.8) 

(11.9) 
Provided that this determinantal equation is convergent it may, for given k, be solved 
for the possible values of c and can be viewed upon as an alternative to the Fredholm 
determinant for (6.14). 

A special situation arises when the functions q,(y) and r,(y) are orthogonal for 
n # m in the scalar product 

U, 9 )  = W Y ;  c)f'(y)g(y) dy 
UI 

where the weight function W is given by 

(11.10) 

(11.11) 

In this case pnm becomes diagonal and (11.9) reduces to 

l{k2 - h,,(c,k)}L,,l= 0 (1 1.12) 

where 

h,(c,k) = 1; W(y;c)q,(y)r,(y)dy. (11.13) 

The eigenvalues are then c = cn, where h,(c, k )  = k 2 .  Basic-flow profiles V(y) that 
give rise to a diagonal pn, should satisfy the differential equation 

(11.14) 

where we choose the c-dependence of W (or alternatively p) such that U does not 
depend upon e. 

d2U 
- + W ( y ; c ) u = p + c W ( y ; c )  
dy2 
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12. S u m m a r y  and conclusions 

In the present paper we have tried to establish an integral-equation approach to the 
(linear) barotropic instability of a sheared zonal flow. Thus we were able to derive 
some results that appear t o  be new. 

Starting from an integrc-differential equation with a non-degenerate kernel for 
the vorticity perturbation we present a formal solution of the barotropic-instability 
problem. A normal-mode analysis of our integro-differential equation yields singular 
eigenfunctions that have the same structure as the van Kampen modes in a hot plasma. 
By classifying these eigenfunctions we identify a new expression for the dispersion 
relationship governing the instability. Subsequently we use this form of the dispersion 
relationship to derive expressions for the growth rate of a marginally instable mode 
in terms of the flow field and the neutral solutions. Furthermore we have discussed 
the relevance of the continuous spectrum associated with the instability eigenvalue 
problem thereby identifying that contrary to what is stated in the literature, the 
dispersion function is multi-valued. The disappearance of this continuous spectrum, 
for example for a vortex sheet, is conjectured to be a manifestation of the mathematical 
phenomenon of spectral concentration. Finally we give an exact explicit expresion for 
the dispersion relationship in the form of a determinantal equation that involves only 
the basic-flow profile and the phase speed. We discuss some special cases in which this 
determinantal equation, that is in fact an alternative for the Fredholm determinant, 
can be solved exactly. 

As we have hoped to demonstrate, the integral-equation formulation of the 
barotropic-instability problem has some conclusive advantages over the conventional 
differential-equation approach via the Rayleigh-Kuo equation. In particular we have 
shown that within this framework the normal-mode analysis is simplified from both 
the theoretical and practical point of view. In essence this is due to the fact that 
the formulation enables the isolation, or separation, of the continuous spectrum and a 
subsequent reduction of the problem to a much simpler one that is free of inconvenient 
singularities and is tractable by classical methods. 

As we have pointed out in section 6 the normal modes (6.1), although singular 
and not governed by any dispersion law, enable the construction of physically and 
mathematically acceptable perturbations by the superposition of many such modes. 
Thus it is possible to solve the initial-value problem for the barotropic instability 
in a way that is, in principle, identical to the Laplace-transform method. In this 
picture the instability can he understood as the constructive interference of many 
singular eigenmodes of the form (6.1). This phase mixing in physical space results 
in an algebraically damped contribution due to the continuous spectrum whereas the 
dispersion law for the discrete spectrum governs the exponentially damped or amplified 
collective modes. 
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